Improving Ranking by Respecting the Multidimensionality and Uncertainty of User Preferences

نویسندگان

  • Bettina Berendt
  • Veit Köppen
چکیده

Rankings or ratings are popular methods for structuring large information sets in search engines, e-Commerce, e-Learning, etc. But do they produce the right rankings for their users? In this paper, we give an overview of major evaluation approaches for rankings as well as major challenges facing the use and usability of rankings. We point out the importance of an interdisciplinary perspective for a truly user-centric evaluation of rankings. We then focus on two central problems: the multidimensionality of the criteria that influence both users’ and systems’ rankings, and the randomness inherent in users’ preferences. We propose multicriteria decision analysis and the integration of randomness into rankings as solution approaches to these problems. We close with an outlook on new challenges arising for ranking when systems address not only individuals, but also groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Information Ranking by Respecting the Multidimensionality and Uncertainty of User Preferences

Rankings and ratings are popular methods for structuring large information sets in search engines, e-Commerce, e-Learning, etc. But do they produce the right rankings for their users? In this paper, we give an overview of major evaluation approaches for rankings as well as major challenges facing the use and usability of rankings. We point out the importance of an interdisciplinary perspective ...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

A novel ranking method for intuitionistic fuzzy set based on information fusion and application to threat assessment

A novel ranking method based on multi-time information fusion is proposed for intuitionistic fuzzy sets (IFSs) and applied to the threat assessment problem, a multi-attribute decision making (MADM) one. This method integrates a designed intuitionistic fuzzy entropy (IFE), the closeness degree of technique for order preference by similarity to ideal solution (TOPSIS), the decision maker¡¯s (DM¡¯...

متن کامل

Hierarchical Group Compromise Ranking Methodology Based on Euclidean–Hausdorff Distance Measure Under Uncertainty: An Application to Facility Location Selection Problem

Proposing a hierarchical group compromise method can be regarded as a one of major multi-attributes decision-making tool that can be introduced to rank the possible alternatives among conflict criteria. Decision makers’ (DMs’) judgments are considered as imprecise or fuzzy in complex and hesitant situations. In the group decision making, an aggregation of DMs’ judgments and fuzzy group compromi...

متن کامل

Improving the Information Retrieval System through Effective Evaluation of Web Page in Client Side Analysis

To improve the information retrieval system for user, programmers have to learn a user's preferences accurately. In order to optimize retrieval accuracy, modeling the users appropriately based on their preferences and personalizing search according to each individual user are important. Implicit feedback information improves the user modeling process. The advantage of implicit modeling is effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010